Closures

This package defines several closure relations that can be used out of the box. It is straightforward to implement your own closure, see Defining your own closure.

Some closures, for example the Rogers-Young closure, include free parameters that may be fixed by the requirement of thermodynamic consistency. See the Thermodynamic Consistency page for an example.

Some closures use a renormalized indirect correlation function $\gamma^*(r) = \gamma(r) - u_{LR}(r)$ instead of the standard one. Here, $u_{LR}(r)$ is the long range tail of the interaction potential. There are several ways in which the interaction potential can be split into a short-range and long range part, the most common one is the Weeks-Chandler-Andersen construction. In order to use these ...

Implemented Closures

Below is an alphabetical list of implemented closures. We use the notation shown in the Theory section.

OrnsteinZernike.BallonePastoreGalliGazzilloType
BallonePastoreGalliGazzillo <: Closure

Implements the Ballone-Pastore-Galli-Gazzillo closure $b(r) = (1 + s \gamma(r))^{1/s} - \gamma(r) - 1 $. Here, $s$ is a free parameter that can be determined with thermodynamic consistency.

Example:

closure = BallonePastoreGalliGazzillo(1.5)

References:

Ballone, P., et al. "Additive and non-additive hard sphere mixtures: Monte Carlo simulation and integral equation results." Molecular Physics 59.2 (1986): 275-290.

source
OrnsteinZernike.BomontBretonnetType
BomontBretonnet <: Closure

Implements the Bomont-Bretonnet closure $b(r) = \sqrt{1+2\gamma^*(r) + f \gamma^*(r)^2} - \gamma^*(r) - 1 $. Here $\gamma^* = \gamma - u_{LR}$ , in which $ u_{LR}$ is the long range tail of the potential, and $f$ is a free parameter that can be determined with thermodynamic consistency.

Example:

closure = BomontBretonnet(0.5)

References:

Bomont, J. M., and J. L. Bretonnet. "A self-consistent integral equation: Bridge function and thermodynamic properties for the Lennard-Jones fluid." The Journal of chemical physics 119.4 (2003): 2188-2191.

source
OrnsteinZernike.CarbajalTinokoType

CarbajalTinoko <: Closure

Implements the Carbajal-Tinoko closure $e(r;\alpha)\left[(2-y(r))e^{y(r)}-2-y(r)\right]/\left(e^{y(r)}-1\right)$ where $e(r;\alpha)=3\exp(\alpha r)$ for $\alpha <0$ and $e(r;\alpha) = 3+\alpha$ otherwise.

Example:

closure = CarbajalTinoko(0.4)

References:

Carbajal-Tinoco, Mauricio D. "Thermodynamically consistent integral equation for soft repulsive spheres." The Journal of chemical physics 128.18 (2008).

source
OrnsteinZernike.CharpentierJackseType
CharpentierJackse <: Closure

Implements the Charpentier-Jackse closure $b(r) = \frac{1}{2\alpha}\left(\sqrt{1+4\alpha\gamma^*(r) } - 2\alpha\gamma^*(r) - 1\right) $. Here $\gamma^* = \gamma - u_{LR}$ , in which $ u_{LR}$ is the long range tail of the potential, and $\alpha$ is a free parameter that can be determined with thermodynamic consistency.

Example:

closure = CharpentierJackse(0.5)

References:

Charpentier, I., and N. Jakse. "Exact numerical derivatives of the pair-correlation function of simple liquids using the tangent linear method." The Journal of Chemical Physics 114.5 (2001): 2284-2292.

source
OrnsteinZernike.ChoudhuryGhoshType
ChoudhuryGhosh <: Closure

Implements the Choudhury-Ghosh closure $b(r) = -\frac{-\gamma^*(r)^2}{2(1+\alpha \gamma^*(r))} $ for $\gamma^*(r) >0$, and $b(r)=-\gamma^*(r)^2/2$ otherwise. Here $\gamma^* = \gamma - u_{LR}$ , in which $ u_{LR}$ is the long range tail of the potential, and $\alpha$ is a free parameter that is determined by an empirical relation.

Example:

α(ρ) = 1.01752 - 0.275ρ # see the reference for this empirical relation
closure = ChoudhuryGhosh(α(0.4))

References:

Choudhury, Niharendu, and Swapan K. Ghosh. "Integral equation theory of Lennard-Jones fluids: A modified Verlet bridge function approach." The Journal of chemical physics 116.19 (2002): 8517-8522.

source
OrnsteinZernike.DuhHaymetType
DuhHaymet <: Closure

Implements the Duh-Haymet closure $b(r) = \frac{-\gamma^*(r)^2}{2\left[1+\left(\frac{5\gamma^*(r)+11}{7\gamma^*(r)+9}\right)\gamma^*(r)\right]} $ for $\gamma^*(r) >0$, and $b(r)=-\gamma^*(r)^2/2$ otherwise. Here $\gamma^* = \gamma - u_{LR}$ , in which $ u_{LR}$ is the long range tail of the potential,

Example:

closure = DuhHaymet()

References:

source
OrnsteinZernike.ExtendedRogersYoungType
ExtendedRogersYoung <: Closure

Implements the extended Rogers-Young closure $b(r) = \ln(a\phi(r)^2 + \phi(r) + 1) - γ(r) $. Here, $\phi(r) = \frac{\exp(f(r)\gamma(r)) - 1}{f(r)}$, and $f(r)=1-\exp(-\alpha r)$, in which $\alpha$ is a free parameter, that may be chosen such that thermodynamic consistency is achieved. Example:

closure = ExtendedRogersYoung(0.5, 0.5) # order is α, a

References: J. Chem. Phys. 128, 184507 (2008)

source
OrnsteinZernike.HypernettedChainType
HypernettedChain

Implements the Hypernetted Chain closure $c(r) = (f(r)+1)\exp(\gamma(r)) - \gamma(r) - 1$, or equivalently $b(r) = 0$.

Example:

closure = HypernettedChain()
source
OrnsteinZernike.KhanpourType
Khanpour <: Closure

Implements the Khanpour closure $b(r) = \frac{1}{\alpha}\ln(1+\alpha\gamma(r)) - \gamma $. Here $\alpha$ is a free parameter that can be determined with thermodynamic consistency.

Example:

closure = Khanpour(0.5)

References:

Khanpour, Mehrdad. "A unified derivation of Percus–Yevick and hyper-netted chain integral equations in liquid state theory." Molecular Physics 120.5 (2022): e2001065.

source
OrnsteinZernike.LeeType
Lee <: Closure

Implements the Lee closure $b(r) = -\frac{\zeta\gamma^*(r)^2}{2} \left( 1- \frac{\phi \alpha \gamma^*(r)}{1 + \alpha\gamma^*(r)} \right) $. Here $\gamma^* = \gamma + ρ f(r)/2$ , in which $ f(r)$ is the Mayer-f function and $\rho$ the density. Additionally, $\zeta$,$\phi$, and, $\alpha$ are free parameters that can be determined with thermodynamic consistency or zero-separation theorems.

Example:

closure = Lee(1.073, 1.816, 1.0, 0.4) # ζ, ϕ, α, ρ

References:

Lee, Lloyd L. "An accurate integral equation theory for hard spheres: Role of the zero‐separation theorems in the closure relation." The Journal of chemical physics 103.21 (1995): 9388-9396.

source
OrnsteinZernike.MartynovSarkisovType
MartynovSarkisov <: Closure

Implements the Martynov-Sarkisov Closure b(r) = -\sqrt{1+2\gamma}-1-\gamma, which is constructed for the 3d hard-sphere liquid.

Example:

closure = MartynovSarkisov()

References:

Martynov, G. A., and G. N. Sarkisov. "Exact equations and the theory of liquids. V." Molecular Physics 49.6 (1983): 1495-1504.

source
OrnsteinZernike.ModifiedHypernettedChainType
ModifiedHypernettedChain <: Closure

Implements the Modified Hypernetted Chain closure $b(r) = b_{HS}(r) $. Here $b_{HS}(r/σ)=\left((a_1+a_2x)(x-a_3)(x-a_4)/(a_3 a_4)\right)^2$ for $x<a_4$ and $b_{HS}(r)=\left(A_1 \exp(-a_5(x-a_4))\sin(A_2(x-a_4))/r\right)^2$ is the hard sphere bridge function found in Malijevský & Labík. The parameters are defined as

\[x = r/σ-1\]

\[A_1 = (a_1+a_2 a_4)(a_4-a_3)(a_4+1)/(A_2 a_3 a_4)\]

\[A_2 = \pi / (a_6 - a_4 - 1)\]

\[a_1 = \eta (1.55707 - 1.85633\eta) / (1-\eta)^2\]

\[a_2 = \eta (1.28127 - 1.82134\eta) / (1-\eta)\]

\[a_3 = (0.74480 - 0.93453\eta)\]

\[a_4 = (1.17102 - 0.68230\eta)\]

\[a_5 = 0.15975/\eta^2\]

\[a_6 = (2.69757 - 0.86987\eta)\]

and $\eta$ is the volume fraction of the hard sphere reference system. This closure only works for single component systems in three dimensions. By default, $\sigma = 1.0$.

Example:

closure = ModifiedHypernettedChain(0.4)
closure = ModifiedHypernettedChain(0.4; sigma=0.8)

References:

Lado, F. "Perturbation correction for the free energy and structure of simple fluids." Physical Review A 8.5 (1973): 2548.

Malijevský, Anatol, and Stanislav Labík. "The bridge function for hard spheres." Molecular Physics 60.3 (1987): 663-669.

source
OrnsteinZernike.ModifiedVerletType
ModifiedVerlet <: Closure

Implements the modified Verlet Closure $b(r) = -\frac{\gamma^2(r)/2}{1+\alpha \gamma(r)}$. If $\gamma(r)<0$, the closure reads $-\gamma^2/2$. Example:

closure = ModifiedVerlet(0.2)

References:

Verlet, Loup. "Integral equations for classical fluids: I. The hard sphere case." Molecular Physics 41.1 (1980): 183-190.

source
OrnsteinZernike.PercusYevickType
PercusYevick

Implements the Percus-Yevick closure $c(r) = f(r)(1+\gamma(r))$, or equivalently $b(r) = \ln(1 + \gamma(r)) - γ(r)$.

Example:

closure = PercusYevick()
source
OrnsteinZernike.RogersYoungType
RogersYoung <: Closure

Implements the Rogers-Young closure $b(r) = \ln(\frac{\exp(f(r)\gamma(r)) - 1}{f(r)} + 1) - γ(r) $. Here $f(r)=1-\exp(-\alpha r)$, in which $\alpha$ is a free parameter, that may be chosen such that thermodynamic consistency is achieved. Example:

closure = RogersYoung(0.5)

References:

source
OrnsteinZernike.SoftCoreMeanSphericalType
SoftCoreMeanSpherical <: Closure

Implements the soft core mean spherical closure $b(r) = \ln(\gamma^*(r) + 1) - \gamma^*(r)$. Here $\gamma^* = \gamma - u_{LR}$ , in which $u_{LR}$ is the long range tail of the potential.

Example:

closure = SoftCoreMeanSpherical()

References:

source
OrnsteinZernike.VerletType
Verlet <: Closure

Implements the Verlet Closure $b(r) = -\frac{A\gamma^2(r)/2}{1+B \gamma(r)/2}$, where by default $A=1$ and $B=8/5$. These values are tuned by the virial coefficients of the 3d hard sphere liquid.

Example:

closure = Verlet()
closure = Verlet(A=3.0, B=4.0)

References:

Verlet, Loup. "Integral equations for classical fluids: I. The hard sphere case." Molecular Physics 41.1 (1980): 183-190.

source
OrnsteinZernike.VompeMartynovType
VompeMartynov <: Closure

Implements the Vompe-Martynov closure $b(r) = \sqrt{1+2\gamma^*(r) } - \gamma^*(r) - 1 $. Here $\gamma^* = \gamma - u_{LR}$ , in which $ u_{LR}$ is the long range tail of the potential, and $\alpha$ is a free parameter that can be determined with thermodynamic consistency.

Example:

closure = VompeMartynov()

References:

Vompe, A. G., and G. A. Martynov. "The bridge function expansion and the self‐consistency problem of the Ornstein–Zernike equation solution." The Journal of chemical physics 100.7 (1994): 5249-5258.

source
OrnsteinZernike.ZerahHansenType

ZerahHansen <: Closure

Implements the Zerah-Hansen (HMSA) (HNC-SMSA) closure $b(r) = \ln(\frac{\exp(f(r)\gamma^*(r)) - 1}{f(r)} + 1) - γ^*(r) $. Here $\gamma^* = \gamma - u_{LR}$ , in which $ u_{LR}$ is the long range tail of the potential, and $f(r)=1-\exp(-\alpha r)$, in which $\alpha$ is a free parameter, that may be chosen such that thermodynamic consistency is achieved.

Example:

closure = ZerahHansen(0.5)

References:

Zerah, Gilles, and Jean‐Pierre Hansen. "Self‐consistent integral equations for fluid pair distribution functions: Another attempt." The Journal of chemical physics 84.4 (1986): 2336-2343.

source